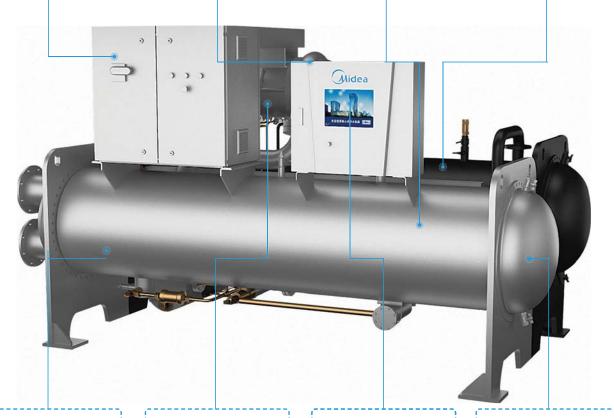
Центробежный инверторный чиллер

Достоинства конструкции

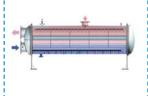
Щит управления Может монтироваться на агрегате, а также устанавливаться отдельно.


Горизонтальный компрессор с симметричными рабочими колесами встречного расположения

Экономайзер в двухступенчатой схеме

Испаритель со сплошной падающей пленкой (защищен патентом)

R134a


Экологически безопасный хладагент

Инверторный электродвигатель компрессора

Цветной сенсорный экран

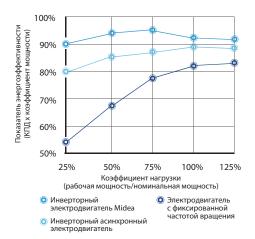
Конденсатор со встроенным переохладителем

Особенности и преимущества

Современная технология теплообмена

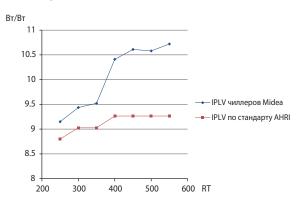
Горизонтальный центробежный одноосный компрессор с симметричными рабочими колесами встречного расположения

Конструктивное решение центробежного инверторного чиллера с прямым приводом и испарителем со сплошной падающей пленкой защищено целым рядом патентов. В конструкции компрессора используется 7 запатентованных технических решений:


- 1) Горизонтальный центробежный одноосный компрессор с симметричными крыльчатками встречного расположения
- 2) Способ соединения и крепления рабочего колеса
- 3) Механизм регулировки направляющего аппарата с роликом
- 4) Объединение упорного диска и оси вращения
- 5) Блок выводов и электродвигатель компрессора с блоком выводов
- 6) Алгоритм корректировки положения лопаток направляющего аппарата центробежного чиллера
- 7) Устройство регулировки подачи газа и центробежный компрессор с устройством регулировки подачи газа

Высокоэффективный инверторный электродвигатель

КПД электродвигателя 95,5%, показатель энергоэффективности (КПД х коэффициент мощности) более чем на 2% выше, чем у инверторного асинхронного электродвигателя.


Высокая удельная мощность и небольшой размер – составляет всего 20% от размера асинхронного инверторного электродвигателя.

Позволяет работать с большой частотой вращения, пределы регулировки частоты вращения 120–300 Гц.

Высокая эффективность

Эффективность определена по стандартам ASHRAE-90.1-2013 и AHRI 550/590-2011. Из приведенных ниже зависимостей видно, что эффективность центробежных чиллеров Midea с прямым приводом выше определяемых стандартами.

Симметричные рабочие колеса Midea, встречно расположенные на горизонтальной оси

Впервые разработанный и запатентованный компанией Midea горизонтальный компрессор с симметричными рабочими колесами встречного расположения и перепускным трубопроводом.

Одинаковые встречные усилия на рабочие колеса увеличивают срок службы, а сокращение утечек через уплотнения и отсутствие потерь в трансмиссии повышают эффективность.

Рабочие колеса традиционного типа

Традиционные рабочие колеса двухступенчатых компрессоров обычно устанавливаются последовательно в одном направлении, и осевые силы, действующие на оба колеса, складываются.

Повышенная нагрузка на упорный подшипник вызывает механические повреждения, поэтому требуются подшипники с более высокой надежностью

Технические характеристики

Инверторный чиллер

MWVC_A-FB3H			900	1000	1200	1400	1600	1800	1900	
	тонн охлаждения		250	300	350	400	450	500	550	
Холодо- производительность	кВт		879.1	1055	1231	1407	1582	1758	1934	
	10⁴ккал/ч		76	91	106	121	136	151	166	
Эффективность	Потребляемая мощность	кВт	141.2	165.2	193.0	224.2	247.3	276.1	309.5	
	Коэффициент производительности EER	кВт/кВт	6.224	6.384	6.376	6.274	6.399	6.367	6.248	
Компрессор	Установленная мощность	кВт	200	200	240	280	315	315	350	
	Параметры электропитания 380 В, 3-фазн., 50/60 Гц									
	Метод запуска Инверторный прямой привод									
	Охлаждение электродвигателя хладагентом									
Испаритель	Производительность по охлажденной воде	м ³ /ч	136	163	191	218	245	272	299	
	Перепад давления охлаждаемой воды	кПа	49.10	48.57	49.03	49.57	50.18	49.96	49.60	
	Число проходов 2									
	Температура охлаждаемой воды на входе/выходе	°C	12.22/6.67							
	Коэффициент загрязнения	м². °С/кВт	0.0176							
	Вид соединения		Фланецевое							
	Патрубок для подачи воды		DN200	DN200	DN200	DN250	DN250	DN250	DN250	
Конденсатор	Расход охлаждающей воды	M ³ /4	171	205	239	273	308	342	376	
	Перепад давления охлаждающей воды	кПа	45.80	47.25	47.54	46.50	47.98	50.63	51.47	
	Число проходов	проходов 2								
	Температура охлаждающей воды на входе/выходе	°C 29.44/34.59								
	Коэффициент загрязнения	м². °С/кВт	0.044							
	Вид соединения	Фланецевое								
	Патрубок для подачи воды		DN200	DN200	DN200	DN250	DN250	DN250	DN250	
Масса	Отгрузочный вес	КГ	4650	4800	4950	5650	5800	5950	6100	
	Эксплуатационный вес	КГ	5550	5750	5950	6700	6900	7100	7300	
Размеры	Длина агрегата	MM	3650	3650	3650	3650	3650	3650	3650	
	Ширина агрегата	MM	1940	1940	1940	2000	2000	2000	2000	
	Высота агрегата	MM	2150	2150	2150	2150	2150	2150	2150	
	Длина в упаковке	MM	3650	3650	3650	3650	3650	3650	3650	
	Ширина в упаковке	MM	1940	1940	1940	2000	2000	2000	2000	
	Высота в упаковке	MM	2350	2350	2350	2350	2350	2350	2350	

Производительность и эффективность определены по стандартам AHRI 550/590-2011.

Расчетное максимально допустимое давление для испарителя и конденсатора 1,0 МПа; исполнение под более высокое допустимое давление – по специальному требованию.